ly Practice Problems

Chapter-wise Sheets

33	í a	 Dis UN	
Date :	Start Time :	End Time :	

CHEMISTRY (CC23)

SYLLABUS: Coordination Compounds

Max. Marks: 180 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 45 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

- The compounds [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ 5. constitutes a pair of
 - (a) coordination isomers (b) linkage isomers
 - (c) ionization isomers
- (d) optical isomers
- Which of the following species is not expected to be a ligand?
 - (a) NO
- (b) NH₄+
- (c) NH₂CH₂CH₂NH₂
- (d) Both (a) and (b)
- In which of the following complexes of the Co (At. no. 27), will the magnitude of Δ_0 be the hightest?
 - (a) $[Co(CN)_6]^{3}$
- (b) $[Co(C_2O_4)_3]^{3-}$
- (c) $[Co(H_2O)_6]^{3+}$
- (d) $[Co(NH_1)_c]^{3+}$
- Which of the following carbonyls will have the strongest C - O bond?
 - (a) $Mn(CO)_6^+$
- (b) Cr(CO)₆
- (c) V(CO),
- (d) Fc(CO)₅

- A square planar complex is formed by hybridisation of which atomic orbitals?

 - (a) s, p_x, p_y, d_{yz} (b) $s, p_x, p_y, d_{v^2-v^2}$
 - (c) s, p_x , p_y , d_{y^2}
- (d) s, p_v, p_z, d_{xv}
- The type of isomerism present in Pentamminenitrochromium (III) chloride is
 - (a) optical
- (b) linkage
- (c) ionisation
- (d) polymerisation.
- In the silver plating of copper, $K[Ag(CN)_2]$ is used instead of AgNO₃. The reason is
 - (a) a thin layer of Ag is formed on Cu
 - (b) more voltage is required
 - (c) Ag⁺ ions are completely removed from solution
 - (d) less availability of Ag+ions, as Cu cannot displace Ag from [Ag(CN)₂]-ion.

RESPONSE

- 1. (a)(b)(c)(d)
- 2. (a)(b)(c)(d)
- 3. (a)(b)(c)(d)
- **4.** (a)(b)(c)(d)
- (a)(b)(c)(d)

GRID

- **6.** (a)(b)(c)(d)
- 7. (a)(b)(c)(d)

Space for Rough Work ..

c-90 - DPP/ CC23

- The spin only magnetic moment value (in Bohr magneton units) of Cr(CO)6 is
 - (a) 0
- (b) 2.84
- (c) 4.90
- (d) 5.92
- Low spin complex of d^6 -cation in an octahedral field will have the following energy:

 - (a) $\frac{-12}{5}\Delta_0 + P$ (b) $\frac{-12}{5}\Delta_0 + 3P$
 - (c) $\frac{-2}{5}\Delta_0 + 2P$ (d) $\frac{-2}{5}\Delta_0 + P$

 $(\Delta_{\bullet} = \text{Crystal Field Splitting Energy in an octahedral field,})$ P = Electron pairing energy)

- 10. An example of doublesalt is
 - (a) Bleachingpowder
- (b) $K_4[Fe(CN)_6]$
- (c) Hypo
- (d) Potash alum
- The ionisation isomer of $[Cr(H_2O), Cl(NO_2)]Cl$ is
 - (a) $[Cr(H_2O)_4(O_2N)]Cl_2$
 - (b) $[Cr(H_2O)_4Cl_2](NO_2)$
 - (c) |Cr(H₂O)₄Cl(ONO)|Cl
 - (d) $[Cr(H_2O)_4Cl_2(NO_2)].H_2O$
- 12. $[Co(NH_3)_4(NO_2)_7]$ Cl exhibits
 - (a) linkage isomerism, ionization isomerism and geometrical isomerism
 - ionization isomerism, geometrical isomerism and optical isomerism
 - linkage isomerism, geometrical isomerism and optical isomerism
 - linkage isomerism, ionization isomerism and optical isomerism
- 13. The IUPAC name of $K_3[Ir(C_2O_4)_3]$ is
 - (a) potassium trioxalatoiridium (III)
 - (b) potassium trioxalatoiridate (III)
 - (c) potassium tris (oxalato) iridium (III)
 - (d) potassium tris (oxalato) iridate (III)
- 14. Consider the following complex [Co(NH₃)₅CO₃]ClO₄ The coordination number, oxidation number, number of d-electrons and number of unpaired d-electrons on the metal are respectively

- (a) $6,3,6,\bullet$ (b) 7,2,7,1 (c) 7,1,6,4 (d) 6,2,7,3
- Which of the following species represent the example of dsp^2 - hybridisation?
 - (a) [Fe(CN)₆]³⁻
- (b) $[Ni(CN)_4]^{2-}$
- (c) $[Ag(CN)_2]^-$
- (d) $[Co(CN)_6]^{3}$
- When AgNO, is added to a solution of Co(NH₃)₅Cl₃, the precipitate of AgCl shows two ionisable chloride ions. This
 - Two chlorine atoms satisfy primary valency and one secondary valency
 - One chlorine atom satisfies primary as well as secondary valency
 - Three chlorine atoms satisfy primary valency
 - (d) Three chlorine atoms satisfy secondary valency
- The value of the 'spin only' magnetic moment for one of the following configurations is 2.82 B.M. The correct one is
 - (a) d⁵ (in strong ligand field)
 - (b) d³ (in weak as well as in strong fields)
 - (c) d⁴ (in weak ligand fields)
 - (d) d⁴ (in strong ligand fields)
- 18. Consider the following complex ions, P, Q and R. $P = [FeF_6]^{3-}, Q = [V(H_2O)_6]^{2+} \text{ and } R = [Fe(H_2O)_6]^{2+}$ The correct order of the complex ions, according to their spin-onlymagnetic moment values (in B.M.) is
 - (a) R < Q < P
- (b) Q < R < P
- (c) R < P < O
- (d) Q < P < R
- Which of the following is organo-metallic compound?
 - (a) $Ti(C_2H_4)_4$
- (b) $Ti(OC_2H_5)_4$
- (c) Ti(OCOCH₃)₄
- (d) $Ti(OC_6H_5)_4$
- Which of the following statements is correct? (Atomic number of Ni = 28)
 - (a) Ni(CO), is diamagnetic and [NiCl₃]²- and [Ni(CN)₄]²are paramagnetic
 - Ni(CO)₄and [Ni(CN)₄]²- are diamagnetic and [NiCl₄]²is paramagnetic
 - Ni(CO), and [NiCl₄]²-are diamagnetic and [Ni(CN),]²is paramagnetic
 - [NiCl₄]²⁻ and [Ni(CN)₄]²⁻ are diamagnetic and Ni(CO)₄ is paramagnetic

RESPONSE GRID

- 8. (a) (b) (c) (d)
- 9. (a)(b)(c)(d)
- 10. (a) (b) (c) (d)
- 11. (a) (b) (c) (d)
- 12. (a)(b)(c)(d)

- 13.(a)(b)(c)(d) 18.abcd
- 14.(a)(b)(c)(d) 19.abcd
- 15. (a) (b) (c) (d) 20.abcd
- 16. (a) (b) (c) (d)
- 17. (a) b) c) d)

Space for Rough Work

- 21. The correct order for the wavelength of absorption in the visible region is:
 - (a) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$
 - (h) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$
 - (c) $[Ni(H_2 \bullet)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(N\bullet_2)_6]^{4-}$
 - (d) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- The compound which is not coloured is
 - (a) $K_4 \text{Fe}(CN)_6$ (b)
- K₃Fe(CN)₆
- (c) Na_2CdCl_4 (d)
- Na₂CuCl₄
- 23. Which is not π bonded complex?
 - (a) Zeise's salt (b) Ferrocene
 - (c) Dibenzene chromiun (d) Tetraethyl lead
- 24. Which of the following are inner orbital complex (i.e., involving d²sp³ hybridisation) and is paramagnetic in nature?
 - (a) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$, $[Co(C_2O_4)_3]^{3-}$
 - (b) $[MnCl_6]^{3-}$, $[FeF_6]^{3-}$, $[CoF_6]^{3-}$
 - (c) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$
 - (d) $[MnCl_6]^{3-}$, $[Fc(CN)_6]^{3-}$, $[Co(C_2O_4)_3]^{3-}$
- 25. Give name of the complex, name should specify the position of ligands.

- (a) bistransphosphinecarbonylchloroiridium (II)
- carbonylchlorobistrausphosphineiridium (III)
- carbonylchlorobistransphosphinciridium (I)
- (d) chlorocarbonylbistransphosphinciridium (I)
- 26. Which of the following coordination compounds would exhibit optical isomerism?
 - pentamminenitrocobalt(III) iodide
 - diamminedichloroplatimun(II)
 - trans-dicyanobis (ethylenediamine) chromium (III)

31. (a) (b) (c) (d)

tris-(cthylendiamine) cobalt (III) bromide

- 27. An excess of AgNO, is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium (iii) chloride. The number of moles of AgCI precipitated would be:
 - (c) 0.01(a) 0.002 (b) 0.003
 - (d) 0.001
- The most stable complex among the following is
 - (a) $K_3[Al(C_2O_4)_3](b)$ [Pt(en)]Cl
 - (c) $[Ag(NH_3)_2]Cl(d)$ K, Ni(EDTA)]
- 29. Which one of the following has largest number of isomers?
 - $[Ir(PR_3)_2H(CO)]^{2+}$ (b) $[Co(NH_3)_5CI]^{2+}$
 - (c) $[Ru(NH_3)_4Cl_2]^+$ (d) $[Co(en)_2Cl_2]^+$
 - (R = alkyl group, cn = ethylenediamine)
- Which of the following statements related to crystal field splitting in octahedral coordination entities is incorrect?
 - (a) The $d_x^2 \frac{1}{y^2}$ and d_z^2 orbitals has more energy as compared to d_{xy} , d_{yz} and d_{xz} orbitals.
 - (b) Crystal field spitting energy (Δ_0) depends directly on the charge of the metal ion and on the field produced by the ligand.
 - (c) In the presence of Br as a ligand the distribution of electrons for d⁴ configuration will be t₂³g, e_o¹,
 - (d) In the presence of CN⁻ as a ligand $\Delta_0 < P$.
- 31. Calculate the value of $\log K_3$, when $\log \text{ values of } K_2$, K_1 , K_4 and 1.9?
 - (b) 2.7 (a) 2.0
- (c) 3.0 (d) 2.5
- Which of the following does not have a metal-carbon bond?
 - (a) $Al(OC_2H_5)_3$
- (b) C₂H₅MgBr
- (c) $K[Pt(C_2H_4)Cl_3]$ (d) Ni(CO)₄
- 33. In $Fc(CO)_s$, the Fc-C bond possesses
 - (a) ionic character
 - (c) π-character
- (b) σ-character only (d) both σ and π characters
- The geometry of Ni(CO), and Ni(PPh₃)₂Cl₂are
 - (a) both square planar
 - (b) tetrahedral and square planar
 - (c) both tetrahedral
 - (d) None of these

RESPONSE GRID

- 22.(a)(b)(c)(d) 21.(a)(b)(c)(d) 26.(a)(b)(c)(d)
 - 27.(a)(b)(c)(d)
- 23.(a)(b)(c)(d) 28.(a)(b)(c)(d)
- 24.(a)(b)(c)(d) 29.(a)(b)(c)(d)
 - 25. (a)(b)(c)(d) **30.** (a)(b)(c)(d) 34.(a)(b)(c)(d)
- 32.abcd 33.abcd Space for Rough Work

DPP/CC23 c-92

- 35. The crystal field splitting energy for octahedral (Δ_0) and tetrahedral (Δ,) complexes is related as

 - (a) $\Delta_t = -\frac{1}{2}\Delta_0$ (b) $\Delta_t = -\frac{4}{9}\Delta_0$
 - (c) $\Delta_t = -\frac{3}{5}\Delta_{\phi}$ (d) $\Delta_t = -\frac{2}{5}\Delta_{\phi}$
- 36. Match the columns.

A.

Column-I Column-II $[Ni(CN)_{1}]^{2-}$ Ti4+

- Chlorophyll
- sp³; paramagnetic Non-planar
- Ziegler Natta catalyst
- IV. Mg²⁺
- D. |NiCl.|2-Dcoxyhacmoglobin
- V. Planar (VI) dsp²; diamagnetic
- (a) A-VI; B-IV; C-I; D-II; E-III
- (b) A II; B IV; C I; D VI; E III
- (c) A II; B IV; C I; D VI; E V
- (d) A-VI; B-IV; C-I; D-II; E-V
- 37. If magnetic moment of [MnBr_s]²⁻ is 5.9 BM. Predict the number of electrons?
 - (a) 2
- (b) 3
- (c) 6
- (d) 5
- The correct structure of ethylenediaminetetraacetic acid (EDTA)is

(a)
$$\frac{\text{HOOC} - \text{H}_2\text{C}}{\text{HOOC} - \text{H}_2\text{C}} N - \text{CH} = \text{CH} - N \frac{\text{CH}_2 - \text{COOH}}{\text{CH}_2 - \text{COOH}}$$

(b)
$$\frac{\text{HOOC}}{\text{HOOC}} N - \text{CH}_2 - \text{CH}_2 - N < \frac{\text{COOH}}{\text{COOH}}$$

(c)
$$HOOC-H_2C$$
 $N-CH_2-CH_2-N$
 CH_2-COOH
 CH_2-COOH

(d)
$$HO \bullet C - H_2C$$
 $N - CH - CH - N$
 CH_2
 CH_2
 CH_2 -COOH

- 39. The hypothetical complex chloro-diagnatriamminecobalt (III) chloride can be represented as
 - (a) $[CoCl(NH_3)_3(H_2O)_3]Cl_3$
 - (b) $[Co(NH_1)_3(H_2O)CI_3]$
 - (c) $[Co(NH_1)_3(H_2O)_3CI]$
 - (d) $[Co(NII_3)_3(H_2O)_3]CI_3$
- Which of the following is incorrect regarding spectrochemical series?
 - (a) $NH_3 > H_5O$
- (b) $F^- > C_2 O_4^{2-}$
- (c) NCS->SCN-
- (d) en>EDTA4-
- Which of the following is the limitation of crystal field theory?
 - Ligands are assumed as point charges.
 - It does not accounts for the covalent character of bonding between the ligand and the central atom.
 - It does not explain how colour of coordination compounds depends on ligand attached to central metal atom/ion.
 - (i) and (ii) (a)
- (b) (ii) and (iii)
- (c) (ii) only
- (d) (i), (ii) and (iii)
- For $[Co_2(CO)_8]$, what is the total number of metal carbon bonds and number of metal-metal bonds.
 - (b) 8,2
- (c) 8, 1
- (d) 10,0
- Which will give a white precipitate with AgNO₂ in aqueous
 - (a) $[Co(NH_3)_5Cl](NO_2)_2$ (b) $[Pt(NH_3)_6]Cl_4$
 - (c) |Pt(en)CI₂|
- (d) $[Cu(NH_3)_4]SO_4$
- 44. $[NiCl_2 \{P(C_2H_5)_2(C_6H_5)\}_2]$ exhibits temperature dependent magnetic behaviour (paramagnetic/diamagnetic). The coordination geometries of Ni2+ in the paramagnetic and diamagnetic states are respectively
 - (a) tetrahedral and tetrahedral
 - square planar and square planar
 - (c) tetrahedral and square planar
 - (d) square planar and tetrahedral
- Which one of the following coordination compounds is used to inhibit the growth of tumours?
 - (a) Trans-platin
- (b) EDTAcomplex of calcium
- [(Ph₃P)₃RhCl]
- (d) Cis-platin

RESPONSE GRID

35.abcd **40.**(a)(b)(c)(d)

45.(a)(b)(c)(d)

- 36.abcd 41.(a)(b)(c)(d)
- 37.(a)(b)(c)(d) 42.(a)(b)(c)(d)
- 38.(a)(b)(c)(d) 43.(a)(b)(c)(d)
- **39.** (a) (b) (c) (d) **44.** (a) (b) (c) (d)

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC23

- 1. (c) [PtCl₂(NH₃)₄]Br₂ and [PtBr₂(NH₃)₄]Cl₂ are ionisation isomers
- 2. (b)
- (a) In octahedral complex the magnitude of Δ_o will be highest in a complex having strongest ligand. Out of the given ligands CN⁻ is strongest. So, Δ_o will be highest for [Co(CN)₆]³⁻. Thus option (a) is correct.
- 4. (a) As + vechargeon the central metal atom increases, the less readily the metal can donate electron density into the π^* orbitals of CO ligand to weaken the C O bond. Hence, the C O bond would be strongest in Mn(CO)₆⁺.
- 5. (b)
- (b) The chemical formula of Pentamminenitrochromium (lll) chloride is

$$\left[\operatorname{Cr}(\operatorname{NH}_3)_5\operatorname{NO}_2\right]\operatorname{Cl}_2$$

It can exist in following two structures

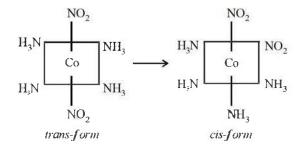
$$\left[\text{Cr}(\text{NH}_3)_5 \text{NO}_2 \right] \text{Cl}_2$$
 and

$$\left[\text{Cr}(\text{NH}_3)_5 \text{ONO} \right] \text{Cl}_2$$

Therefore the type of isomerism found in this compound is linkage isomerism as nitro group is linked through N as $-NO_2$ or through O as -ONO.

- 7. (d) In silver plating K[Ag(CN)₂] is used which provides constant and required supply of Ag⁺ ions as Ag(CN)₂⁻ is very stable. But if AgNO₃ is used concentration of [Ag⁺] in solution will be very large. In that case Ag will be deposited at faster rate without any uniformity.
- 8. (a) Chromium in Cr(CO)₆ is in zero oxidation state and has [Ar]¹⁸ 3d⁵4s¹ as the electronic configuration. However, CO is a strong ligand, hence pairing up of electrons takes place leading to following configuration in Cr(CO)₆.

$$\underbrace{\boxed{\uparrow \downarrow} \boxed{\uparrow \downarrow}}_{d^2sp^3} \underbrace{\boxed{\downarrow \times \times} \boxed{\times \times}}_{d^2sp^3} \underbrace{\boxed{\downarrow \times \times}}_{d^2sp^3} \underbrace{\boxed{\downarrow \times}}_{d^2sp^3}$$


Since the complex has no unpaired electron, its magnetic moment is zero.

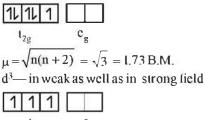
- 9. **(b)** $d^6 t_{2g}^{2, 2, 2} \text{ eg}^{0, 0}$ (in low spin) $CFSE = -0.4 \times 6\Delta_0 + 3P$ $= -\frac{12}{5} \Delta_0 + 3P$
- 10. (d) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$
- 11. (b) Ionisation isomer of $[Cr(H_2O)_4Cl(NO_2)]Cl$ is $[Cr(H_2O)_4Cl_5]NO_2$.

 (a) The given compound may have linkage isomerism due to presence of NO₂ group which may be in the form -NO₂ or -ONO.

It may have ionisation isomerism due to presence of two ionisable group $-NO_2$ & -Cl. It may have geometrical isomerism in the form of *cis-trans* form as follows:

$$\begin{split} &[\text{Co(NH}_3)_4\text{Cl(NO}_2)]\text{NO}_2 \text{ and } [\text{Co(NH}_3) (\text{NO}_2)_2]\text{Cl} \\ &--\text{ionisation isomers.} \\ &[\text{Co(NH}_3)_5(\text{NO}_2)_2]\text{Cl and } [\text{Co(NH}_3)_5(\text{ONO})_2\text{Cl} \\ &--\text{Linkage isomers.} \end{split}$$

Geometrical isomers

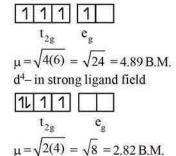

- 13. **(b)** IUPAC name of $K_3[Ir(C_2O_4)_3]$ is potassium trioxalato iridate (III)
- (a) [Co(NH₃)₅CO₃]ClO₄ Six monodentate ligands are attached to Co hence C. N. of Co = 6;
 O. N. = x + 5 × (0) + 1 × (-2) + 1 × (-1) = 0 ∴ x = +3;
 clectronic configuration of Co³⁺[Ar] 3d⁶4s⁰ hence number of d electrons is 6. All d-electrons are paired due to strong ligand hence unpaired electron is zero.
- 15. (b)
- 16. (a) Since the precipitate of AgCl shows two ionisable chloride ion the complex must have the structure.

$$[Co(NH_3)_5Cl]Cl_2 + 2AgNO_3 \rightarrow$$

$$[Co(NH_3)_5Cl](NO_3)_2 + 2AgCl$$

Hence two chlorine atoms satisfy the primary valency and one secondary valency.

17. (d) d_5 — strong ligand field


$$t_{2g}$$
 t_{g}

$$\mu = \sqrt{3(5)} = \sqrt{15} = 3.87B.M.$$

d4- in weak ligand field

s-63

DPP/CC23

18. (b) The electronic configuration of central metal ion in complex ions P, Q and R are

$$P = [FeF_{6}]^{3-}; Fe^{3+}:$$

$$Q = [V(H_{2}O)_{6}]^{2+}; V^{2+}$$

$$R = [Fe(H_{2}O)_{6}]^{2+}; Fe^{2+}$$

$$3d$$

$$A = [Fe(H_{2}O)_{6}]^{2+}; Fe^{2+}$$

$$3d$$

Higher theno, of unpaired electron(s), higher will be magnetic moment.

Thus the correct order of spin only magnetic moment is

Q < R < P

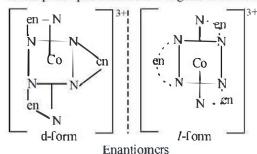
19. (a) Ti(C₂H₄)₄ is an organometallic compound due to Ti directly attached to C- atom

20. (b)

Atom/Ion Complex	Configuration	No. of unpaired electrons	Magnetic nature
Ni ^{2*} (d ⁸) 1NiCl ₁] ²⁻	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2	Paramagnetic
[Ni(CN) ₄] ²⁻	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	Diamagnetic
Ni (4 ⁸ 5 ²) [Ni(C●) ₄]	$ \begin{array}{c cccc} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \hline Rearrangement & sp^{5} \end{array} $	2	Paramagnetic Diamagnetic

21. (a) For any metal cation, the magnitude of Δ_0 depends upon the nature of ligand. Higher the value of Δ_0 , lower will be the wave length absorbed. Δ_0 is crystal field stabilisation energy.

The value of Δ_0 for legands varies as follows


$$H_2O < NH_3 < NO_2^-$$

So, the wavelength absorbed will vary in reverse order

$$NO_{2}^{-} < NH_{3} < H_{2}O$$

22. (c) In Na₂CdCl₄, Cd has oxidation state +2.
 So, its electronic configuration is 4d¹⁰4s⁰.
 All the 4d orbitals are fully filled.
 Hence, there will not be d-d transition resulting in colour.
 So, it is colourless.

- 23. (d) Tetraethyl lead $Pb(C_2H_5)_4$ is not π bonded complex. It is σ bonded organometallic compound.
- **24.** (c) $[Mn(CN)_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ are inner orbital complexes and paramagnetic while $[Co(C_2O_4)_3]^{3-}$ is diamagnetic in nature.
- 25. (c) Naming should be done alphabetically. Hence 'carbonyl' is followed by 'chloro' and then 'phosphine'. bis used to denote two same groups and trans denotes the position. 'CO', and 'PH₃' are neutral ligands. Only Cl⁻ is charged. Hence oxidation state of Ir is (+ I) only. Thus correct IUPAC name of given complex is carbonylchlorobistransphosphineiridium (I).
- 26. (d) The optical isomers are pair of molecules which are non super imposable mirror images of each other

The two optically active isomers are collectivity called enantiomers.

27. (d)
$$[Cr(H_2O)_4Cl_2]Cl + AgNO_3 \longrightarrow AgCl +$$

$$[Cr(H_2O)_4Cl_2]NO_3$$

$$Molarity = \frac{wt}{mol. mass} \times \frac{1000}{vol.}$$

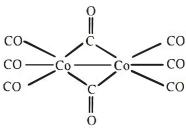
$$\frac{wt}{mol. mass} = molarity \times \frac{vol.}{1000} = \frac{0.01 \times 100}{1000}$$

- 28. (d) K₂[Ni(EDTA)]. Since EDTA is hexadentate and chelating and coordinates from six sides forming more stable complex
- 29. (d) isomers

- 30. (d) CN^- is a strong field ligand and form low spin complexes thus $\Delta_n > P$.
- 31. **(b)** $\beta = K_1 K_2 K_3 K_4$ $\log \beta = \log (K_1 K_2 K_3 K_4)$ $\log \beta = \log K_1 + \log K_2 + \log K_3 + \log K_4$ $\log K_3 = 11.9 - (3.20 + 2.0 + 4.0)$ $\log K_3 = 2.7$
- 32. (a) Triethoxyaluminium has no Al C linkage

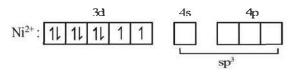
$$\text{Al} \underbrace{\begin{array}{c} \text{O}-\text{CH}_2\text{CH}_3\\ \text{O}-\text{CH}_2\text{CH}_3\\ \text{O}-\text{CH}_2\text{CH}_3 \end{array}}$$

S-64 DPP/CC23

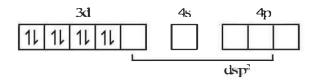

- 33. (d) Due to some backbonding by sidewise overlapping between d-orbitals of metal and p-orbital of carbon, the Fe C bond has σ and π character.
- 34. (c) $Ni(CO)_4 Ni(PPh_3)_2 Cl_2$ O.S. $Ni^0 Ni^{2+}$ E.C. $[Ar]3d^84s^2 [Ar]3d^84s^0$ Pairing of e No pairing of e Hybridization sp^3 (tetrahedral) sp^3 (tetrahedral)
- 35. (b) The crystal field splitting in tetrahedral complexes is lower than that in octahedral complexes, and $\Delta_t = -\frac{4}{2}\Delta_0.$
- 36. (a) $[NiCl_4]^{2-}$ is sp³ hybridised and paramagnetic in nature $[Ni(CN)_4]^{2-}$ is square planar and diamagnetic. Chlorophyll contains Mg^{2+} , Ziegler Natta catalyst contains Ti^{4+} , Deoxyhaemoglobin is nonplanar and oxyhaemoglobin planar.
- 37. (d) Magnetic moment can be calculated by using the relation $\sqrt{n(n+2)B.M.}$ Where n = number of electrons and B.M. is Bohr magneton.

$$\therefore 5.9 = \sqrt{n(n+2)}$$

$$\therefore n = 5$$


- 38. (c) The correct structure of EDTA is $\frac{\text{HOOC-H}_2\text{C}}{\text{HOOC-H}_2\text{C}} \text{N-CH}_2 \text{CH}_2 \text{N} \frac{\text{CH}_2\text{-COOH}}{\text{CH}_2\text{-COOH}}$
- 39. (a) The complex chlorodia quatria mnine cobalt (III) chloride can have the structure [CoCl(NH₂)₂(H₂O)₂]Cl₂
- **40. (b)** According to spectrochemical series $C_2O_4^{2-} > F^-$.
- 41. (a)

42. (a) Structure of $[Co_7(CO)_8]$


Total M - C bonds = 10, Total M - M bonds = 1

- 43. **(b)** $\left[Pt(NH_3)_6 \right] Cl_4 \rightleftharpoons \left[Pt(NH_3)_6 \right]^{4+} + 4Cl^-;$ $Ag^+ + Cl^- \rightarrow AgCl \text{ (ppt)}$
- 44. (c) In both states (paramagnetic and diamagnetic) of the given complex, Ni exists as Ni²⁺ whose electronic configuration is [Ar] $3d^84s^0$.

In the above paramagnetic state the geometry of the complex is sp^3 giving tetrahedral geometry.

The diamagnetic state is achieved by pairing of electrons in 3d orbital.

Thus the geometry of the complex will be dsp^2 giving square planar geometry.

45. (d)

